39 research outputs found

    Different but overlapping populations of Strongyloides stercoralis in dogs and humans-Dogs as a possible source for zoonotic strongyloidiasis

    Get PDF
    Strongyloidiasis is a much-neglected soil born helminthiasis caused by the nematode Strongyloides stercoralis. Human derived S. stercoralis can be maintained in dogs in the laboratory and this parasite has been reported to also occur in dogs in the wild. Some authors have considered strongyloidiasis a zoonotic disease while others have argued that the two hosts carry host specialized populations of S. stercoralis and that dogs play a minor role, if any, as a reservoir for zoonotic S. stercoralis infections of humans. We isolated S. stercoralis from humans and their dogs in rural villages in northern Cambodia, a region with a high incidence of strongyloidiasis, and compared the worms derived from these two host species using nuclear and mitochondrial DNA sequence polymorphisms. We found that in dogs there exist two populations of S. stercoralis, which are clearly separated from each other genetically based on the nuclear 18S rDNA, the mitochondrial cox1 locus and whole genome sequence. One population, to which the majority of the worms belong, appears to be restricted to dogs. The other population is indistinguishable from the population of S. stercoralis isolated from humans. Consistent with earlier studies, we found multiple sequence variants of the hypervariable region I of the 18 S rDNA in S. stercoralis from humans. However, comparison of mitochondrial sequences and whole genome analysis suggest that these different 18S variants do not represent multiple genetically isolated subpopulations among the worms isolated from humans. We also investigated the mode of reproduction of the free-living generations of laboratory and wild isolates of S. stercoralis. Contrary to earlier literature on S. stercoralis but similar to other species of Strongyloides, we found clear evidence of sexual reproduction. Overall, our results show that dogs carry two populations, possibly different species of Strongyloides. One population appears to be dog specific but the other one is shared with humans. This argues for the strong potential of dogs as reservoirs for zoonotic transmission of S. stercoralis to humans and suggests that in order to reduce the exposure of humans to infective S. stercoralis larvae, dogs should be treated for the infection along with their owners

    A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana

    Get PDF
    Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes

    Improved reference genome uncovers novel sex-linked regions in the Guppy (Poecilia reticulata)

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Oxford University Press via the DOI in this recordData availability: Population genomics data are available on ENA: Study: PRJEB10680 PCR-free data are available on ENA: Study PRJEB36450 Genome assembly is available on ENA ID: PRJEB36704; ERP119926 All scripts and pipelines are available on github: https://github.com/bfrasercommits/guppy_genomeTheory predicts that the sexes can achieve greater fitness if loci with sexually antagonistic polymorphisms become linked to the sex determining loci, and this can favour the spread of reduced recombination around sex determining regions. Given that sex-linked regions are frequently repetitive and highly heterozygous, few complete Y chromosome assemblies are available to test these ideas. The guppy system (Poecilia reticulata) has long been invoked as an example of sex chromosome formation resulting from sexual conflict. Early genetics studies revealed that male colour patterning genes are mostly but not entirely Y-linked, and that X-linkage may be most common in low predation populations. More recent population genomic studies of guppies have reached varying conclusions about the size and placement of the Y-linked region. However, this previous work used a reference genome assembled from short-read sequences from a female guppy. Here, we present a new guppy reference genome assembly from a male, using long-read PacBio single-molecule real-time sequencing (SMRT) and chromosome contact information. Our new assembly sequences across repeat- and GC-rich regions and thus closes gaps and corrects mis-assemblies found in the short-read female-derived guppy genome. Using this improved reference genome, we then employed broad population sampling to detect sex differences across the genome. We identified two small regions that showed consistent male-specific signals. Moreover, our results help reconcile the contradictory conclusions put forth by past population genomic studies of the guppy sex chromosome. Our results are consistent with a small Y-specific region and rare recombination in male guppies.Max Planck SocietyEuropean Research Council (ERC)Natural Environment Research Council (NERC

    Genetische Grundlagen einzigartiger Überlebensstrategien - Über Bärtierchen und fleischfressende Pflanzen -

    No full text
    All living organisms leverage mechanisms and response systems to optimize reproduction, defense, survival, and competitiveness within their natural habitat. Evolutionary theories such as the universal adaptive strategy theory (UAST) developed by John Philip Grime (1979) attempt to describe how these systems are limited by the trade-off between growth, maintenance and regeneration; known as the universal three-way trade-off. Grime introduced three adaptive strategies that enable organisms to coop with either high or low intensities of stress (e.g., nutrient deficiency) and environmental disturbance (e.g., seasons). The competitor is able to outcompete other organisms by efficiently tapping available resources in environments of low intensity stress and disturbance (e.g., rapid growers). A ruderal specism is able to rapidly complete the life cycle especially during high intensity disturbance and low intensity stress (e.g., annual colonizers). The stress tolerator is able to respond to high intensity stress with physiological variability but is limited to low intensity disturbance environments. Carnivorous plants like D. muscipula and tardigrades like M. tardigradum are two extreme examples for such stress tolerators. D. muscipula traps insects in its native habitat (green swamps in North and South Carolina) with specialized leaves and thereby is able to tolerate nutrient deficient soils. M. tardigradum on the other side, is able to escape desiccation of its terrestrial habitat like mosses and lichens which are usually covered by a water film but regularly fall completely dry. The stress tolerance of the two species is the central study object of this thesis. In both cases, high througput sequencing data and methods were used to test for transcriptomic (D. muscipula) or genomic adaptations (M. tardigradum) which underly the stress tolerance. A new hardware resource including computing cluster and high availability storage system was implemented in the first months of the thesis work to effectively analyze the vast amounts of data generated for both projects. Side-by-side, the data management resource TBro [14] was established together with students to intuitively approach complex biological questions and enhance collaboration between researchers of several different disciplines. Thereafter, the unique trapping abilities of D. muscipula were studied using a whole transcriptome approach. Prey-dependent changes of the transcriptional landscape as well as individual tissue-specific aspects of the whole plant were studied. The analysis revealed that non-stimulated traps of D. muscipula exhibit the expected hallmarks of any typical leaf but operates evolutionary conserved stress-related pathways including defense-associated responses when digesting prey. An integrative approach, combining proteome and transcriptome data further enabled the detailed description of the digestive cocktail and the potential nutrient uptake machinery of the plant. The published work [25] as well as a accompanying video material (https://www.eurekalert.org/pub_releases/ 2016-05/cshl-fgr042816.php; Video credit: Sönke Scherzer) gained global press coverage and successfully underlined the advantages of D. muscipula as experimental system to understand the carnivorous syndrome. The analysis of the peculiar stress tolerance of M. tardigradum during cryptobiosis was carried out using a genomic approach. First, the genome size of M. tardigradum was estimated, the genome sequenced, assembled and annotated. The first draft of M. tardigradum and the workflow used to established its genome draft helped scrutinizing the first ever released tardigrade genome (Hypsibius dujardini) and demonstrated how (bacterial) contamination can influence whole genome analysis efforts [27]. Finally, the M. tardigradum genome was compared to two other tardigrades and all species present in the current release of the Ensembl Metazoa database. The analysis revealed that tardigrade genomes are not that different from those of other Ecdysozoa. The availability of the three genomes allowed the delineation of their phylogenetic position within the Ecdysozoa and placed them as sister taxa to the nematodes. Thereby, the comparative analysis helped to identify evolutionary trends within this metazoan lineage. Surprisingly, the analysis did not reveal general mechanisms (shared by all available tardigrade genomes) behind the arguably most peculiar feature of tardigrades; their enormous stress tolerance. The lack of molecular evidence for individual tardigrade species (e.g., gene expression data for M. tardigradum) and the non-existence of a universal experimental framework which enables hypothesis testing withing the whole phylum Tardigrada, made it nearly impossible to link footprints of genomic adaptations to the unusual physiological capabilities. Nevertheless, the (comparative) genomic framework established during this project will help to understand how evolution tinkered, rewired and modified existing molecular systems to shape the remarkable phenotypic features of tardigrades.Alle lebenden Organismen verwenden Mechanismen und Rückkopplungssysteme um Reproduktion, Überlebenswahrscheinlichkeit, Abwehreffizienz und Konkurrenzfähigkeit in ihrem natürlichen Habitat zu optimieren. Evolutionäre Theorien, wie die von John Philip Grime (1979) entwickelte „universal adaptive strategy theory“ (UAST), versuchen zu beschreiben wie diese Systeme durch eine Balance zwischen Wachstum, Erhaltung und Regeneration, auch gemeinhin bekannt als universeller Dreiwege-Ausgleich, des jeweiligen Organismus limitiert sind. Grime führte dazu drei adaptive Strategien ein, die es Organismen ermöglicht sich an hohe oder niedrige Stress-Intensitäten (z.B. Nahrungsknappheit) oder umweltbedingte Beeinträchtigung (z.B. Jahreszeiten) anzupassen. Der Wettkämpfer ist in der Lage seine Konkurrenz durch eine effiziente Ressourcengewinnung zu überflügeln und ist vor allem bei niedrigem Stresslevel und minimalen umweltbedingten Beeinträchtigungen effizient (z. B. schnelles Wachstum). Ruderale Organismen hingegen durchlaufen den Leben- szyklus in kurzer Zeit und sind damit perfekt an starke umweltbedingte Beeinträchtigungen, wie zum Beispiel Jahreszeiten, angepasst. Allerdings können auch sie nur bei niedrigen Stresslevel effizient wachsen. Die letzte Gruppe von Organismen, die Stresstoleranten sind in der Lage sich an hohen Stressintensitäten mithilfe extremer physiologischer Variabilität anzupassen, können das allerdings nur in Umgebungen mit niedrigen umweltbedingten Beeinträchtigungen. Fleischfressende Pflanzen wie die Venusfliegenfalle (D. muscipula) oder Bärtierchen (M. tardigradum) sind zwei herausragende Beispiele für stresstolerante Organismen. Die Venusfliegenfalle ist in der Lage Insekten mit spezialisierten Blätter, welche eine einzigartige Falle bilden, zu fangen. Die Pflanze kompensiert so die stark verminderte Mengen an wichtigen Makronährstoffen (z.B. Stickstoff) in den Sümpfen von Nord- und Süd-Carolina. Bärtierchen dagegen sind in der Lage in schnell austrocknenden Habitaten wie Moosen oder Flechten, die normalerweise mit einem Wasserfilm überzogen sind, durch eine gesteuerte Entwässerung ihres Körpers zu überleben. Die Stresstoleranz beider Spezies ist zentraler Forschungsschwerpunkt dieser Dissertation. In beiden Fällen wer- den Hochdurchsatz-Methoden zur Sequenzierung verwendet um genomische (Bärtierchen) sowie transkriptomische (Venusfliegenfalle) Anpassungen zu identifizieren, die der enorem Stresstoleranz zugrunde liegen. Um den erhöhten technischen Anforderungen der Datenanal- ysen beider Projekte Rechnung zu tragen wurde in den ersten Monaten der Dissertation eine neue zentrale Rechenumgebung und ein dazugehöriges Speichersystem etabliert. Parallel wurde die Datenmanagementplattform TBro [14] zusammen mit Studenten aufgesetzt, um komplexe biologische Fragestellung mit einem fachübergreifendem Kollegium zu bearbeiten. Danach wurden die einzigartigen Fangfähigkeiten der Venusfliegenfalle mittels einem tran- skriptomischen Ansatz untersucht. Vor allem wurden transkriptionelle Änderungen infolge eines Beutefangs sowie gewebespezifische Aspekte der ruhenden Pflanzen untersucht. Die Analyse zeigte deutlich, dass die Fallen der fleischfressenden Pflanze immer noch Merkmale von typischen „grünen“ Blättern aufweisen. Während des Beutefangs und -verdauens jedoch wird eine Vielzahl an evolutionär konservierten Systemen aktiviert, die bisher nur mit Stres- santworten und zellulärer Verteidigung in Verbindung gebracht worden sind. Die Integration von proteomischen und transkriptomischen Hochdurchsatzdaten ermöglichte es zudem den Verdauungssaft der Venusfliegenfalle genaustens zu beschreiben und wichtige Komponenten der Aufnahmemaschinerie zu identifizieren. Die wissenschaftliche Arbeit [25] und das beglei- tende Videomaterial (https://www.eurekalert.org/pub_releases/2016-05/cshl-fgr042816.php; Video credit: Sönke Scherzer) erfreute sich einer breiten Berichterstattung in den Medien und unterstreicht die Vorteile der Venusfliegenfalle als experimentelles System um fleis- chfressende Pflanzen besser zu verstehen. Die genomische Analyse des Bärtierchen (M. tardigradum) zielte auf die außerordentliche Stresstoleranz, vor allem auf die Kryptobiose, einen Zustand in dem Stoffwechselvorgänge extrem reduziert sind, ab. Dazu wurden das komplette genetische Erbgut (Genom) entschlüsselt. Die Größe des Genomes wurde bes- timmt und das Erbgut mittels Sequenzierung entschlüsselt. Die gewonnenen Daten wurden zu einer kontinuierlichen Sequenz zusammengesetzt und Gene identifiziert. Der dabei etablierte Arbeitsablauf wurde verwendet um ein weiteres Bärtierchengenom genau zu überprüfen. Im Rahmen dieser Analyse stellte sich heraus, dass eine große Anzahl an Kontaminationen im Genom von H. dujardini vorhanden sind [27]. Das neu etablierte Genom von M. tardigradum wurde im folgenden verwendet um einen speziesübergreifenden Vergleich dreier Bärtierchen und aller Spezies aus der Metazoadatenbank von Ensembl durchzuführen. Die Analyse zeigte, dass Bärtierchengenome sehr viel Ähnlichkeit zu den bereits veröffentlichten Genomen aus dem Überstamm der Urmünder (Protostomia) aufweisen. Die erstmalige Verfügbarkeit aller Bärtierchengenome ermöglichte es zudem, das Phylum der Bärtierchen als Schwester der Nematoden mittels einer phylogenomische Analyse zu platzieren. Die vergleichende Anal- yse identifizierte außerdem zentrale evolutionäre Trends, vor allem einen enormen Verlust an Genen in dieser Linie der Metazoa. Die Analyse ermöglichte es aber nicht, generelle Mechanismen, die zur enormen Stresstoleranz in Bärtierchen führen, artübergreifend zu identifizieren. Vor allem das Fehlen von weiteren molekularen Daten für einzelne Bärtierchen- spezies (z.B. transkriptionelle Daten für M. tardigradum) machten es unmöglich die wenigen genomische Adaptionen mit den physiologischen Besonderheiten der Bärtierchen in Deckung zu bringen. Nichtsdestotrotz konnten die vergleichenden Analysen zeigen, dass Evolution auch innerhalb der Bärtierchen verschiedenste Systeme neu zusammensetzt, neue Funktionen erschafft oder bestehenden Systeme modifiziert und damit die außerordentliche phänotypis- che Variabilität ermöglicht
    corecore